Input Forces Estimation for Nonlinear Systems by Applying a Square-Root Cubature Kalman Filter

نویسندگان

  • Xuegang Song
  • Yuexin Zhang
  • Dakai Liang
چکیده

This work presents a novel inverse algorithm to estimate time-varying input forces in nonlinear beam systems. With the system parameters determined, the input forces can be estimated in real-time from dynamic responses, which can be used for structural health monitoring. In the process of input forces estimation, the Runge-Kutta fourth-order algorithm was employed to discretize the state equations; a square-root cubature Kalman filter (SRCKF) was employed to suppress white noise; the residual innovation sequences, a priori state estimate, gain matrix, and innovation covariance generated by SRCKF were employed to estimate the magnitude and location of input forces by using a nonlinear estimator. The nonlinear estimator was based on the least squares method. Numerical simulations of a large deflection beam and an experiment of a linear beam constrained by a nonlinear spring were employed. The results demonstrated accuracy of the nonlinear algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple-sensor Fusion Tracking Based on Square-root Cubature Kalman Filtering

Nonlinear state estimation and fusion tracking are always hot research topics for information processing. Compared to linear fusion tracking, nonlinear fusion tracking takes many new problems and challenges. Especially, the performances of fusion tracking, based on different nonlinear filters, are obviously different. The conventional nonlinear filters include extended Kalman filter (EKF), unsc...

متن کامل

Sensor Fusion with Square-Root Cubature Information Filtering

This paper derives a square-root information-type filtering algorithm for nonlinear multi-sensor fusion problems using the cubature Kalman filter theory. The resulting filter is called the square-root cubature Information filter (SCIF). The SCIF propagates the square-root information matrices derived from numerically stable matrix operations and is therefore numerically robust. The SCIF is appl...

متن کامل

Rotated Unscented Kalman Filter for Two State Nonlinear Systems

In the several past years, Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF) havebecame basic algorithm for state-variables and parameters estimation of discrete nonlinear systems.The UKF has consistently outperformed for estimation. Sometimes least estimation error doesn't yieldwith UKF for the most nonlinear systems. In this paper, we use a new approach for a two variablestate no...

متن کامل

Cubature Kalman smoothers

The cubature Kalman filter (CKF) is a relatively new addition to derivative-free approximate Bayesian filters built under the Gaussian assumption. This paper extends the CKF theory to address nonlinear smoothing problems; the resulting state estimator is named the fixed-interval cubature Kalman smoother (FI-CKS). Moreover, the FI-CKS is reformulated to propagate the square-root error covariance...

متن کامل

Adaptive Iterated Square-Root Cubature Kalman Filter and Its Application to SLAM of a Mobile Robot

For the mobile robot Simultaneous Localization and Mapping (SLAM),a new algorithm is proposed, and named Adaptive Iterated Square-Root Cubature Kalman Filter based SLAM algorithm (AISRCKF-SLAM). The main contribution of the algorithm is that the numerical integration method based on cubature rule is directly used to calculate the SLAM posterior probability density. To improve innovation covaria...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2017